Concepts for Increasing Geological Storage Space

(Using Insights from Oil and Gas Industry Experience)

L Stephen Melzer

EOR Carbon Management Workshop

December 4, 2007

Overview

- Qualifying/Ranking Of Geological Storage Settings
- Sedimentary Settings/Basin Types
- The North American Craton
- The Permian Basin Example

QUALIFYING/RANKING OF GEOLOGICAL STORAGE SETTINGS

- REQUIRED ATTRIBUTES OF GEOLOGICAL SETTINGS
 FOR STORAGE
 - VOLUMETRICS
 - CONFINEMENT (VERTICAL, LATERAL)
 - SUFFICIENT INJECTION RATES

Sedimentary Basins Generally have these Attributes

- SEDIMENTARY VS. OTHER SETTINGS
 - PROVEN TRAPPING CHARACTERISTICS (GAS, OIL, CO₂)
 - LARGE, LATERALLY CONTINUOUS RESERVOIRS
 - EXTENSIVE SUBSURFACE DATA BASE
- TYPES OF SEDIMENTARY BASINS
 - DIVERGENT
 - CONVERGENT
 - SALT CAPPED (SPECIAL CONSIDERATION)

Cross Sectional Representation of Various Types of Sedimentary Basins

Source: Hitchon et al., 1999

Types of World Distribution of Sedimentary Basins

Source: Based on St. John et al., 1984

The North American Craton

NORTH AMERICAN GEOLOGIC FEATURES

Means of CO₂ Geological Storage

- Gas Reservoirs
- Oil Reservoirs
- Deep Saline Aquifers
- Coal Beds
- Salt Caverns

Means of CO₂ Geological Storage

Types of Projects for CO₂ Geological Storage

- Depleted Oil Or Gas Reservoirs
- Enhanced Oil Or Gas Recovery (EOR Or EGR)
- Enhanced Coalbed Methane Recovery (ECBMR)
- Aquifer Injection
- Solution-mined Salt Caverns

Scales of Processes and Studies

• For hydrocarbon generation, migration and accumulation:

basin scale, geological time scale

• For hydrocarbon production and liquid waste disposal:

a field reservoir scale, human time scale

• For CO₂ geological storage: intermediate between the two!

Screening criteria must consider these scales

Process Scales for CO₂ Geological Storage and Sequestration

Basin and Regional-Scale Screening Criteria

Based on:

- Geological characteristics
- Hydrodynamic and geothermal regimes
- Basin resources and maturity
- Industry maturity and infrastructure
- Economic and societal aspects

Types of Sedimentary Basins

• Divergent

- Convergent
 - Active margin
 - Intra-montane

Preferred Sedimentary Basins

Intra-cratonic, foreland and passive-margin basins

Geological Characteristics of Basins Suitable for CO₂ Geological Storage

- Adequate Depth (>3000')
- Strong Confining Seals
- Minimally Faulted, Fractured Or Folded
- Laterally Consistent Sedimentary Sequences

Flow of Formation Waters in Sedimentary Basins

- Driven by sediment compaction on marine shelves
- Driven by tectonic compression in orogenic belts
- Driven by erosional (and glacial) rebound in foreland and intra-cratonic basins
- Driven by topography in intra-montane, foreland and intra-cratonic basins
- Driven by hydrocarbon generation and other internal overpressuring processes

Types of Fluid Flow in Sedimentary Basins

Risk of Leakage in Sedimentary Basins

Heat Flow in Pacific and North American Plates

Basin Maturity

Defined by fossil-energy potential (oil and gas, coals) and degree of exploration and production

Mature:

- Rich in Energy resources, advanced production **Poor:**
 - No or poor in hydrocarbon resources

Industry Maturity and Infrastructure

Developed continental basins:

• Access roads, pipelines, wells

Developed marine basins:

• Drilling and production platforms

Suitability of Sedimentary Basins for CO₂ Geological Storage

	Mature Basin	Immature Basin
Geology	Known	Poorly defined
Hydrodynamic and Geothermal Regimes	Generally Known	Unknown
Hydrocarbon Reservoirs	Mostly Discovered	Very Few Discovered
Hydrocarbon Production	Significant	Incipient
Infrastructure	Well Developed	Rudimentary

Preferred Sedimentary Basins Mature, with developed infrastructure

Preferred Sedimentary Basins Mature, with developed infrastructure

Economic and Societal Aspects

Cost:

 Affected by basin location, marine or continental, climatic conditions, transportation distances, injection depth

Legal:

- Jurisdiction over resources, liability, regulatory regime
 Public Acceptance:
- Proximity to population centers, accept or reject projects

Criterion	Classes				
	1	2	3	<mark>4</mark> ,	<mark>5</mark>
Tectonic Setting	Convergent basin	Convergent intramontane	Divergent continental shelf	Divergent foredeep	Divergent cratonic
Size	Small	Medium	Large	Giant	
Depth	Shallow (<1500m)	Intermediate (1500-3500m)	Deep (>3500m)		

Source: Bachu, 2003

Critorion	Classes					
Citterion	1	2	3	4	5	
Geology	Extensively faulted & fractured	Moderately faulted & fractured	Limited faulting & fracturing, extensive shales			
Hydrogeology	Shallow, short flow systems, or compaction	Intermediate flow systems	Regional, long range flow systems; topography or			

Critorion	Classes					
Gutenon	1	2	3	4	5	
Hydrocarbon Potential	None	Small	Medium	Mature	Over- mature	
Maturity	Unexplored	Exploration	Developing			
Coal & CBM	None	Deep (>800m)	Shallow (200-800m)			
Salts	None	Domes	Beds			

Source: Bachu, 2003

Criterion	Classes				
	1	2	3	4	5
On/Off Shore	Deep Offshore	Shallow Offshore	Onshore		
Climate	Arctic	Subarctic	Desert	Tropical	Temperate
Accessibility	Inaccess- ible	Difficult	Accept- able	Easy	Known
Infrastructure	None	Minor	Moderate	Extensive	Known
CO ₂ Sources	None	Few	Moderate	Major	Known

Source: Bachu, 2003

Local-Scale Screening Criteria

Same criteria as for basin and regional-scale

Additional Criteria:

- Safety and effectiveness
- Economic
- Technical specific

Geological Characteristics of Sites Suitable for CO₂ Geological Storage

- Adequate volume (thickness and porosity)
- Adequate permeability
- Confining unit

Safety and Effectiveness Criteria

- Avoid contamination of energy, mineral and groundwater resources
- Avoid risk to life (plants, animals, humans)
- Avoid, or at least minimize leakage for the desired time period

Economic Criteria

- Potential for additional energy production (EOR, EGR, ECBMR)
- Penalty avoidance by meeting regulatory requirements
- Avoidance of very deep sites that increase cost of drilling and compression
- Access and surface infrastructure
- Location near CO₂ source to minimize transportation costs
- Avoidance of land and subsurface use conflicts

Criteria Specific to Oil and Gas Reservoirs

Should have sufficient capacity without raising reservoir pressure above the initial pressure

BY THE VERY NATURE OF DEEP SALINE AQUIFER INJECTION, ONE WILL HAVE TO ALLOW IN THAT CASE (DOUBLE STANDARD?)

Criteria Specific to Enhanced Oil Recovery

- Light oil (25 to 48 °API)
- Reservoir pressure greater than Minimum Miscibility Pressure (MMP)
- Preferably thin net pay (<20 m) or interbedded thicker payzones
- "Sweepable" Reservoir

Criteria Specific to Enhanced Coalbed Methane Recovery

- Sufficient permeability (several milidarcies and higher)
- Temperatures below the CO₂ critical point (less than 31 °C {88 °F})
- Thick coal seams
- Minimum faulting and folding of the coal seam
- Low water saturation

Source and Sink Matching

Combines geological, engineering, safety, economic and societal criteria in matching CO_2 sources with potential sites for CO_2 geological storage

Additional Criteria for Source-Sink Matching

- Volume, purity and rate of the CO₂ stream
- Proximity and right of access
- Infrastructure for capture, delivery and injection
- Injection, and where appropriate, production strategies
- Presence of energy, mineral and groundwater resources
- Terrain and right of way
- Proximity to population centers
- Expertise and know-how

Conclusions

Geological storage of CO_2 is a technologically feasible means of reducing CO₂ emissions to the atmosphere if proper site selection methods are applied, combining geoscience, engineering, economics and societal criteria for the selection of CO_2 storage sites

Preferred Sedimentary Basins

Intra-cratonic, foreland and passive-margin basins

